On Tachibana and Vishnevskii Operators Associated with Certain Structures in the Tangent Bundle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Old and New Structures on the Tangent Bundle

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifoldM which generalizes Sasakian metric and Cheeger–Gromoll metric along a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M)...

متن کامل

Multiplication on the Tangent Bundle

Manifolds with a commutative and associative multiplication on the tangent bundle are called F-manifolds if a unit field exists and the multiplication satisfies a natural integrability condition. They are studied here. They are closely related to discriminants and Lagrange maps. Frobenius manifolds are F-manifolds. As an application a conjecture of Dubrovin on Frobenius manifolds and Coxeter gr...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Gromoll type metrics on the tangent bundle

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes the Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. We found conditions under which T (M) is almost Kählerian, locally conformal Kählerian or Kählerian or wh...

متن کامل

Manifolds with an Su(2)-action on the Tangent Bundle

We study manifolds arising as spaces of sections of complex manifolds fibering over CP 1 with the normal bundle of each section isomorphic to O(k)⊗ Cn. Any hypercomplex manifold can be constructed as a space of sections of a complex manifold Z fibering over CP . The normal bundle of each section must be the sum of O(1)’s, and this suggests that interesting geometric structures can be obtained i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Physics

سال: 2018

ISSN: 2327-4352,2327-4379

DOI: 10.4236/jamp.2018.610168